Solution

CLASS 6 MATHEMATICS WORKSHEET - PLAYING WITH NUMBERS

Class 06 - Mathematics

Section A

1.

(c) 33

Explanation: 33 is a composite number as it has factors other than 1 and itself. Factors of 33 are 1,3,11,33.
2. (a) $3 \times 3 \times 11$

Explanation: $3 \times 3 \times 11$
3.
(b) infinite

Explanation: The multiple of any number is infinite as a number can multiply till infinite.
4.
(b) 11

Explanation: Sum of first 10 even numbers $=2+4+6+84+10+12+14+16+18+20$
= 110
Average $=\frac{110}{10}$
= 11
5.
(b) 75

Explanation:
We have,

2	180
2	90
3	45
3	15
5	5
	1

\therefore The factors of $180=2 \times 2 \times 3 \times 3 \times 5$
$\therefore 75$ does not divide 180
$\therefore 75$ can not be the HCF of the numbers whose LCM is 180 .
6. (a) 3

Explanation: Prime numbers less than 15 are 2, 3, 5, 7, 11, 13
Where super primes are
$2\left(2^{2}-1=3\right)$
$3\left(3^{2}-1=5\right)$
$7\left(7^{2}-1=13\right)$
\therefore Number of super primes less than 15 are 3 .
7. (a) 4

Explanation: $68=2 \times 2 \times 17$; $4=2 \times 2$ and $12=2 \times 2 \times 3$
So, HCF of 68, 4 and 12 is 4 .
8.
(d) 114345

Explanation: Given a number is divisible by 99. Now, going through the options, we observe that the number 114345 is divisible by 9 and 11 both as the sum of digits of the number is divisible by 9 and sum of digits at odd places $=$ sum of digits at even places.
9.
(b) None of these

Explanation: The measurement of longest tape $=$ H.C.F. of $825 \mathrm{~cm}, 675 \mathrm{~cm}$ and 450 cm .
Factors of $825=3 \times 5 \times 5 \times 11$
Factors of $675=3 \times 5 \times 5 \times 3 \times 3$
Factors of $450=2 \times 3 \times 3 \times 5 \times 5$
H.C.F. $=3 \times 5 \times 5=75 \mathrm{~cm}$

Therefore, the longest tape is 75 cm .
10.
(c) 216

Explanation:

First we have to find out common multiples of 3,4 and 9
For that find L.C.M of 3, 4 and 9

3	$3,4,9$
	$1,4,3$

L.C.M $(3,4,9)=3 \times 4 \times 3=36$

Now multiples of $36=\{36,72,108, \ldots .$.
Sum of first three common multiples of 3, 4 and 9 $=36+72+108=216$

Section B

11. (a) True

Explanation: True
12.
(b) False

Explanation: False
13.
(b) False

Explanation: False
14. 1. Prime, Composite,
15. 1. 0,5
16. 1. Composite number
17.
(d) A is false but R is true.

Explanation: Because 108 is not divisible by 5 as it's ones place has 8 .
18. (a) Both A and R are true and R is the correct explanation of A .

Explanation: As factors of $2=2,1$
Factors of $3=3,1$
Factors of $5=5,1$
19.
(b) Both A and R are true but R is not the correct explanation of A .

Explanation: Because the Highest Common Factor(HCF) of two or more given numbers is the highest (or greatest) of their common factors whereas the Lowest Common Multiple (LCM) of two or more given numbers is the lowest (or smallest or least) of their common multiples so both assertion and reason are correct but not correct explanation.
20.
(b) Both A and R are true but R is not the correct explanation of A .

Explanation: Both A and R are correct but they do not give explanation of each other

Section C

21. 17 and 68 :
$1 \times 17=17$
Factors of 17 are 1 and 17.
$1 \times 68=68 ; 2 \times 34=68 ; 4 \times 17=68$
Factors of 68 are 1, 2, 4, 17, 34 and 68.
\therefore Common factors of 17 and 68 are 1 and 17 .
$\because 17$ and 68 have two common factors.
$\therefore 17$ and 68 are not co-prime numbers.
22. Here we have
$68=1 \times 68$
$68=2 \times 34$
$68=4 \times 17$
$68=17 \times 4$
Stop here, as 4 and 17 have already occurred.
Thus, the factors of 68 are $1,2,4,17,34$ and 68.
23. LCM - Lowest common multiple

The LCM of two numbers is the smallest number that is a multiple of both the numbers, and can be obtained as follows:

2	9,4
2	9,2
3	9,1
3	3,1
	1,1

LCM $=2 \times 2 \times 3 \times 3=36$
24. (a) The H.C.F. of two consecutive numbers is 1 .

Example : 5 \& 6 ; their HCF is 1
(b) The H.C.F. of two consecutive even number is 2.

Example : 4 \& 6 :
Factors of 4 are 1,2,4
Factors of 6 are $1,2,3,6$. their HCF is 2 .
(c) The H.C.F. of two consecutive odd numbers is 1.

Example : 3 \& 5 . Both are co-prime numbers so their HCF is 1.
25. i. We have, 4096 since, the last two digits 96 is divisible by 4
$\therefore 4096$ must be divisible by 4 .
ii. We have, 21084 since, the last two digits 84 is divisible by 4
$\therefore 21084$ must be divisible by 4 .
iii. We have, 31795012 since, the last two digits 12 is divisible by 4
$\therefore 31795012$ must be divisible by 4 .
26. $1 \times 18=18 ; 2 \times 9=18 ; 3 \times 6=18$

Factors of 18 are 1, 2, 3, 6, 9 and 18.
$1 \times 35=35 ; 5 \times 7=35$
Factors of 35 are 1, 5, 7 and 35.
\therefore Common factor of 18 and 35 is 1 .
$\because 18$ and 35 have only 1 as the common factor.
$\therefore 18$ and 35 are co-prime numbers.
27. Multiples of 3 are $3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93$, 96, 99, 102, 105, 108,
Multiples of 4 are $4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,100,104,108, \ldots .$.
\therefore Common multiples of 3 and 4 are 12, 24, 36, 48, 60, 72, 84, 96, 108,
\therefore All the numbers less than 100 which are common multiples of 3 and 4 are 12, 24, 36, 48, 60, 72, 84 and 96 .
28. The greatest four-digit number is 9999 .

3	9999
3	3333
11	1111
101	101
	1

$\therefore 9999=3 \times 3 \times 11 \times 101$
$29.1 \times 5=5$
Factors of 5 are 1 and 5 .
$1 \times 15=15 ; 3 \times 5=15$
Factors of 15 are 1, 3 and 5 .
$1 \times 25=25 ; 5 \times 5=25$
Factors of 25 are 1,5 and 25.
Hence, the common factors of 5,15 and 25 are 1 and 5.
30. Quantity of fruit juice in a vessel $=13 \mathrm{~L} 200 \mathrm{~mL}=(13 \times 1000+200) \mathrm{mL}=13200 \mathrm{~mL}$

Capacity of one glass $=60 \mathrm{~mL}$
\therefore The required number of glasses $=13200 \div 60=220$
Therefore, 220 glasses can be filled by fruit juice.

Section D

31. a. Divisibility by 4

The number formed by last two digits $=52$
4) $52(13$
\qquad
12
12
\because Remainder is 0
$\therefore 52$ is divisible by 4
$\therefore 726352$ is divisible by 4 because a no. is divisible by 4 if the no. formed by its last two digits i.e (ones and tens) is divisible by 4
b. Divisibility by 8 .

The number formed by last three digits $=352$
8) 352 (44
\because Remainder is 0
$\therefore 352$ is divisible by 8 .
$\therefore 726352$ is divisible by 8 because a no. with four or more digits is divisible by 8 if the no. formed by its last three digits is divisible by 8.
32. (i) Divisibility by 4.

The number formed by last two digits $=00$, which is divisible by 4
$\therefore 6000$ is divisible by 4 because a no. is divisible by 4 if the no. formed by its last two digits (i.e ones and tens) is divisible by 4 .
(ii) Divisibility by 8 .

The number formed by last three digits $=000$,
which is divisible by 8 .
$\therefore 6000$ is divisible by 8 because a no. is divisible by 8 if the no. formed by its last three digits is divisible by 8 .
33. i. Yes, last two digits number is divisible by 4.
ii. No, las two digits number is not divisible by 4.
iii. Yes, las two digits number is not divisible by 4.
34. i. No, because last three digits numbers is not divisible by 8 .
ii. Yes, because last three digits number is divisible by 8 .
iii. No, because last three digits number is divisible by 8 .
35. Factors of 35 are $\underline{\mathbf{1}}, \underline{\mathbf{5}}, 7,35$.

Factors of 45 are $\mathbf{1}, ~ 3, ~ \underline{\mathbf{5}}, 9,15,45$.
Common factors are 1 and 5 .
The highest common factor is 5 .
Therefore H.C.F of 35 and 45 is 5.

Section E

36. The minimum number of pencils required to make sets of 30,25 and 20
L.C.M of 30, 25 and 20:

5	30,	25,	20
2	6,	5,	4
	3,	5,	2

L.C.M of 30, $25,20=5 \times 2 \times 3 \times 5 \times 2=300$.

Therefore, the minimum number of colour pencils required to make sets of 1st, 2 nd and 3rd prizes consisting of 30 , 25 , and 20 pencils respectively are 300 .
37. The distance at which they would be at the same point $=$ L.C.M of $24,35,42$.
L.C.M of $24,35,42$:

2	$24,35,42$
7	$12,35,21$
3	$12,5,3$
	$4,5,1$

L.C.M of $24,35,42=2 \times 7 \times 3 \times 4 \times 5 \times 1=840$.
i.e., after 840 m they would meet at the same point.
38. i. Divisibility by 4 .

The number formed by last two digits $=60$.
4) $60(15$

4
20
20
0

\because Remainder is 0 .
$\therefore 60$ is divisible by 4 .
$\therefore 14560$ is divisible by 4 because a no. is divisible by 4 only if the no. formed by its last two digits (i.e ones and tens) is divisible by 4.
ii. Divisibility by 8 .

The number formed by last three digits $=560$
8) $560(70$

0
0
\because Remainder is 0 .
$\therefore 560$ is divisible by 8 .
$\therefore 14560$ is divisible by 8 because a no. is divisible by 8 if the no. formed by its last three digits is divisible by 8 .

Section F

39. Read the text carefully and answer the questions:

The width of a swimming pool (in feet) is a prime number greater than 10 . The width and length of the pool are factors of 408.

(i) 1. only even
(ii) (b) 24 feet

Explanation: 24 feet
(iii) (d) 17 feet

Explanation: 17 feet
(iv) (c) $2 \times 2 \times 5 \times 7 \times 7$

Explanation: $2 \times 2 \times 5 \times 7 \times 7$
(v) (b) False

Explanation: False
40. Read the text carefully and answer the questions:

Ramesh and Suresh are playing game with 50 cards numbered from 1 to 50 . This game is about spotting factors. They arrange the cards in the following way.

1	2	3	4	5	6	7	
8	9	10	11	12	13	14	
15	16	17	18	19	20	21	
22	23	24	25	26	27	28	
29	30	31	32	33	34	35	
36	37	38	\|39		40	41	42
43	44	$\mid 45$ \|	46	47\|	48	49	

(i) 1. given number
(ii) (a) $5,10,15,20,25,30,35,40,45,50$

Explanation: 5,10,15,20,25,30,35,40,45,50
(iii) (d) $1,2,3,4,8,12,16,24,48$

Explanation: 1,2,3,4,8,12,16,24,48
(iv) (a) $1,2,3,4,6,9,12,18,36$

Explanation: 1,2,3,4,6,9,12,18,36
(v) (a) True

Explanation: True

